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Abstract. Discourse parsing aims to identify the relationship between different
discourse units, where most previous works focus on recovering the constituency
structure among discourse units with carefully designed features. In this paper,
we propose to exploit Long Short Term Memory (LSTM) to properly represent
discourse units, while using as few feature engineering as possible. Our transition
based parsing model features a multilayer stack LSTM framework to discover
the dependency structures among different units. Experiments on RST Discourse
Treebank show that our model can outperform traditional feature based system-
s in terms of dependency structures, without complicated feature design. When
evaluated in discourse constituency, our parser can also achieve promising per-
formance compared to the state-of-the-art constituency discourse parsers.

1 Introduction

The task of discourse parsing is to identify the coherence relationship between dis-
course units which is important for many NLP tasks such as sentiment analysis [31],
text summarization [24], question-answering [11] and so on.

Previously, constituency based discoursing parsing method [18, 10, 22] acts as the
dominant parsing approach, though suffering from the high complexity and local max-
imum problem. One noteworthy work is [23]. They first apply dependency parsing to
discourse since dependency trees contain much fewer nodes and with Rhetorical Struc-
ture Theory (RST)[25] analyzing the relations between element discourse unites(EDUs)
is feasible and straightforward. In RST framework, text spans or EDUs are marked with
nucleus or satellite according to their importance. The nucleus span is core of the dis-
course with essential information and the satellite span gives supporting evidence to
the nucleus. However, [23] used Eisner Algorithm [8]and Maximum Spanning Tree Al-
gorithm [26]which are both graph-based approaches. They suffer from two main prob-
lems. Firstly, they need sophisticated features to represent EDUs, as no grammatical or
morphology information could help; Secondly, they suffer from Graph-based parsing
method’s O(n3) time complexity.

Since deep learning methods have been booming recently and various models have
been proposed such as Long Short Term Memory (LSTM) [17], Gated Recurrent U-
nit(GRU) [5], attention-based models [4] and enormous varieties. These models have
gained significant results in many areas like sequence labeling, question answering and
speech recognition. Hence, to address the first inefficient and complex feature engineer-
ing problem, we resort to neural network model to gain better performance with fewer
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features. To be specific, we propose to use LSTM to encode the long term parsing state
with the memory-gate architecture using as few features as possible.

Furthermore, inspired by [2], they do sentence-level parsing by modeling charac-
ters instead of words and gain good performance in morphologically rich languages.
We propose a new multilayer stack LSTM discourse parsing model with novel word
based and word/pos based EDU representation methods which give each EDU a u-
nique surface form or portray. However, intra-sentence character modeling for words
and inter-sentence word modeling for EDUs are absolutely different tasks and the later
is more difficult. Firstly, words have surface form, part of speech tag and the morpholo-
gy spelling includes only 26 characters. But what do EDUs have? EDUs could contain
diverse number of words from the over six hundred thousand words vocabulary taking
English for example. There are out of vocabulary words and massive low term frequen-
cy words making EDU representation more difficult. Secondly, the number of words in
EDUs could be more than the number of letters in the words and the order of the words
arranged in the EDUs could be more diverse.

To solve the second problem, we adopt a transition-based dependency parsing mod-
el. Though time complexity decline to O(n) with the transition-based parsing approach,
most generally the overall accuracy will be worse than the graph-based parsing method,
since the transition-based parsing works in a greedy way using the local optimization to
gain the global optimization along with an error propagation problem. Hence this is a
great challenge to our model and EDU representation method. However, encouragingly,
our method gains a better result than the graph-based model with the same or even less
features. Besides, this better result to some extent shows LSTM model’s high capacity
in discourse parsing.

The contribution of this paper is threefold. First, with our novel EDU representation
method, each EDU obtains a unique "face" and this surface form helps saving human ef-
fort in designing various features. Second, we propose a novel multilayer LSTM model
for dependency discourse parsing with encouraging results both in dependency structure
and discourse constituency. Third, we initially propose to use LSTM to do dependency
discourse parsing.

2 Related Work

Recently, LSTMs have been widely used in multiple NLP tasks with various struc-
tures. [30] proposed the tree structure LSTM and used it to predict semantic relevance.
[13] investigated the use of Deep Bidirectional LSTM (DBLSTM) in a standard neural
network-HMM hybrid system. [7] used a multilayer LSTM to parse the intra-sentence
relation. All these tasks take advantage of LSTM’s memory-gate mechanism which
makes it easier to capture useful information both local and global. So, following [7],
we adopt a stack LSTM to do the discourse parsing.

However, many previous works make great efforts in designing multiple features to
represent EDUs. [23]used 6 sets of sophisticated features including 15 kinds of features
and resources such as WordNet to gain a state-of-art accuracy. [16] used SVM with a
greedy bottom-up way to do discourse segmentation and relation labeling. For encoding
textual organization they listed 13 kinds of features along with dominance set as defined
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in [29]. [19] separated discourse parsing into two stages and used two Conditional Ran-
dom Fields(CRFs) to do the intra-sentential parsing and multi-sentential parsing. They
organized the features used in their parsing model into several sets including 8 organi-
zational features, 4 text structural features, 8 n-gram features, 5 dominance set features,
8 lexical chain features, 2 contextual features and 2 substructure features.

Hence, we try to use as few feature engineering as possible to save human effort.
With our stack LSTM model we gain an encouraging improvement compared with
graph-based model when we use the same or even less features. Furthermore, our mul-
tilayer LSTM model with the novel EDU embedding method gives a new direction
in modeling EDUs and could be improved in many ways. With this potential method
people do not need to rack brains to design features elaborately.

3 Long Short Term Memory Theory
LSTM is designed to cope with the problem of vanishing or exponentially growing
gradient over long sequence inherent in recurrent neural networks (RNNs). The typical
LSTM cell contains an extra memory "cell" (c) and three kinds of multiplicative gates,
the input gate (i), output gate (o) and forget gate ( f ). The memory cell collects inputs
from the input gate and then pass them to the forget gate and finally to the output
gate. This mechanism makes the useless information "forgotten" and only the helpful
proportion of the current input remained. The computation functions are given below:

it = σ(Wxi × xt + Whi × ht−1 + Wci × ct−1 + bi)

ft = σ(Wx f × xt + Wh f × ht−1 + Wc f × ct−1 + b f )

ct = ft � ct−1 + it � tanh(Wxc × xt + Whc × ht−1 + bc)

ot = σ(Wxo × xt + Who × ht−1 + Wco × ct + bo)

ht = ot � tanh(ct)

Here σ is the logistic sigmoid function, � denotes the element-wise multiplication op-
erator; b is the bias and t is the time step, W is the weight matrices and h is the hidden
state vector. See details in [9]. In this paper we use the multilayer stack LSTM to encode
the parsing state. Details will be discussed in Section 5.

4 Transition-based Parsing
Our parser is based on the arc-standard transition inventory[27]. There are four kinds of
actions: SHIFT, SWAP, REDUCE-RIGHT and REDUCE-LEFT as shown in Table 1.
We use three stacks: Buffer(B), Stack(S), Action(A) to load the input sequence, the de-
pendency tree fragment and the history parsing actions. During decision making stage,
when SHIFT operation is selected, the top element in B is popped and then pushed
into S. Reduce action pop off two tree fragments from S(represented with m and n)
and combine them into a new tree fragment represented with gr(M,N) or gr(N,M) de-
pending on the direction of attachment(REDUCE-RIGHT or REDUCE-LEFT), which
is then pushed back into S waiting to be processed next. Here m and n denote the tree
fragments, M and N denotes the corresponding embeddings. With relation r, we use
a recursive neural network g to compose the representations of the two subtrees. The
resulting vector embeds the tree fragment in the same space as EDUs. The composition
detail was thoroughly explored in prior work [28].
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Stackt Buffert Action Stackt+1 Buffert+1 Dep

S (M,m),B SHIFT (M,m),S B _
(M,m),(N,n),S B SWAP (M,m),S (N,n),B _
(M,m),(N,n),S B REDUCE-RIGHT(r) (gr(M,N),m),S B m

r
→ n

(M,m),(N,n),S B REDUCE-LEFT(r) (gr(N,M),n),S B n
r
→ m

Table 1. Transition actions of the parser

5 Method

5.1 EDU representation

Features used in this paper are listed below:
(a) First, second and last word of the EDU;
(b) First, second and last word’s POS tag of the EDU;
(c) Paragraph ID, inter paragraph order, sentence ID, inter sentence order(two form);
(d) 61 frequently used Conjunctions(not listed for space limitation);
(e) Whether the two top EDUs in S and B belong to the same sentence or paragraph;

5.1.1 Standard EDU Embedding Method
To represent the surface form of the input EDUs, we use the features listed in Sec-

tion 5.1 to encode their property. Here we concatenate two kinds of vectors. Firstly,
learned vector representations for each feature extracted from the EDU. Secondly, a
fixed vector representation(t) from other language models as pre-trained embedding.
Here, we use Paragraph Vector [20] to provide the pre-trained embeddings of the EDUs
and these vectors will not change in our model. In the Paragraph Vector framework the
fixed length feature representations could encode variable length texts with an unsuper-
vised algorithm. Hence we use it to encode the variable length EDUs. In this Frame-
work, our model do not has a feature number limitation. However, since in this work we
fight for using as fewer features as possible to gain high performance and saving human
effort, we do not use too many sophisticated features as other works listed in section 2.

We apply a linear map (F) to the resulting vector and passed through a component-
wise ReLU as Equation 1. Here, take first word of the EDU(w1), POS tag of the first
word(p1) as example and f ea1 to f ean could be any feature, b is the bias and t is the
pre-trained embedding(optional).

x = max{0, F(w1, p1, f ea1... f ean, t) + b} (1)

5.1.2 Word Based and Word/POS Based EDU Embedding Method
We compute the continuous space vector embeddings of EDUs using bidirectional

LSTMs [14] in the EDU embedding layer, multilayer LSTM details will be discussed
in Section 5.3. Here, we discuss the word based embedding method of EDUs. This
process is shown in Figure:1. For example, when parsing the EDU: "He works in a
small company named "OPOG".", the bidirectional LSTM reads the EDU twice, once in
forward order and the other in reverse. Each word element is represented with an LSTM
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cell and we concatenate the two EDU vectors with the opposite directions to represent
the EDU. Then the bidirectional LSTM embedding of the EDU is concatenated with
other extracted feature representations. The equation is represented with Equation 2.
Here,

→
e means the forward order EDU representation and

←
e is the reverse order EDU

representation, b is the bias, f ea1 and f ean mean the standard features extracted from
the EDU. However we do not use many sophisticated features and the experiment detail
will be discussed in section 6.

Additionally, we propose a word/pos based embedding method of EDUs. Words
with low term frequency will be replaced with the pos tag of the corresponding word
as shown in Figure:1. We view words appear once in the corpus as low term frequency
words. For example in "He works in a small company named "OPOG".", here, OPOG
is a low term frequency word and we replace it with it’s pos tag "NN". The computation
is also done in EDU embedding layer as the word based EDU embedding method.

He

works

OPOG

 

He

works

...

OPOG

 

X

...

...

PRON He .

EDU EDU 1Feature 2Feature nFeature

. .

NNOPOG

Fig. 1. Word based and Word/POS based EDU Embedding Method

x = max{0, F(
→
e ,
←
e , f ea1... f ean) + b} (2)

5.2 Stack LSTM

Following [7] we use stack LSTM to encode the states. There is a "stack pointer"
(marked with "top" in Figure 2) with each LSTM and it determines which cell in the L-
STM provides ct and ht when computing t+1 time step memory cell contents. The stack
LSTM provides PUSH and POP operations. POP operation moves the stack pointer to
the previous element that could be placed in any location in the stack. PUSH operation
adds a new element to the stack pointed by the previous top element (In Figure 2 the
"output3" element marked with "top" is pointed by the stack pointer). The output vector
of the top element could be viewed as the "summary" of the contents with the current
stack configuration and in this paper only the output vector of the top element is pro-
cessed. For example, when parsing the paragraph shown in Figure 2, the three golden
divided EDUs (1. "President Bush insists"; 2. "it would be a great tool"; 3. "for curbing
budget deficit." ) serve as the input to the LSTM represented with the rectangle in the
lowest row. Memory cells and gates illustrated with the oval are located in the middle
row. The upper row gives the output of the LSTM represented with rectangle.
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Output1
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LSTM cell3

Output3 
(top)

Input2

LSTM cell2

Output2

President Bush insistsit would be a great toolfor curbing  budget deficit.

Fig. 2. Stack LSTM

5.3 Multilayer Stack LSTM Discourse Parsing Model

Our arc-standard transition-based parsing model is equipped with three stacks(A, B, S)
and takes the EDUs,actions and their intermediate embeddings as inputs. Each stack is
a stack LSTM that provides embedding of their current contents. As Figure 3 , stack
B contains the embedding of the input EDUs in reverse order of the discourse. Stack
S contains the partially constructed dependency subtrees with their embeddings. Stack
A is used to preserve the history actions along with the corresponding relations taken
by the parser. Actions used here include REDUCE-LEFT(RL), REDUCE-RIGHT(RR)
,SHIFT(SH) and SWAP(SW). Hence, in Figure 3, "RR(cause)" means the action is
REDUCE-RIGHT and the relation is "cause".

Notably, our model is a multilayer LSTM composed of three layers, EDU embed-
ding layer, the lower layer and the higher layer. As illustrated in Figure 3, we encode the
EDU: "for curbing budget deficit." in EDU embedding layer and details are discussed
in Section 5.1.2. Besides word based and word/POS based EDU embedding method,
there can be many potential pre-processing method to encode EDUs.

Besides, based on the equations in section 3, here, xt is the input to the lower lay-
er(gray rectangle ) and ht of the lower layer acts as the input to the higher layer(white
rectangle). Output is produced from ht at the top layer.

5.4 Parsing with Multilayer Stack LSTM Model

Initially, stack S and stack A only contain the empty symbol(∅). The discourse to be
parsed is located in B with reading order from top to the bottom (the "ROOT" symbol).
The parsing unit is EDU. At each time step, based on the configurations of B, S and A,
the parser computes the representation of the current stack state, predicts the action to
take and updates the stacks. Until S contains the full parse tree rooted with the "ROOT"
symbol and an empty symbol, B only contains the empty symbol and A filled with all
the shift-reduce actions and relations taken by the parser, the parsing process completes.

The action predicting formulas are listed below. In Equation 3, st, bt and at are the
LSTM embedding of the three stacks; W is a parameter matrix to be learned and c is
the bias. These parameters pass through a rectified linear unit (ReLU) nonlinearity [12]
to compute the parser state representation at time t represented by pt.

pt = max{0,W(st, bt, at) + c} (3)
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Fig. 3. Discourse parsing example of the paragraph: “President Bush insists it would be a great
tool for curbing budget deficit.”

Then we apply an affine transform to the embedding of pt and transfer it to the
softmax layer to produce a distribution over parsing decisions(actions and relations) as
shown in Equation 4. The parsing actions could be the four kinds of actions listed in
Table 1. Here, gz is a row vector representing the output embedding of the parser action
z. bz is the bias of action z and A(S , B) is the set of the feasible actions that could be
taken given the current state of the stacks. According to the chain rule, the probability
of the parsing actions z conditioned on the input could be represented as Equation 5.

p(zt |pt) =
exp(gzt × pt + bzt )∑

z′∈A(S ,B) exp(gz′ × pt + bz′ )
(4)

p(z|w) =

|z|∏
t=1

p(zt |pt) (5)

5.5 Composition Functions

As discussed in section 4, we use recursive neural network as our composition func-
tion to encode the dependency tree fragment in stack S in the same vector space as
EDU embeddings. We apply the composition function to the <head(h), modifier(d), re-
lation(r)> triples. We concatenate the vectors of the head, modifier and relation, then
apply a linear operator and a component-wise nonlinearity. See equation 6 , we use
the parser action(such as syntactic relation and direction of attachment) to encode the
relation vector.

c = tanh(0,V(h, d, r) + b) (6)
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6 Experiment

6.1 Data
RST Discourse Treebank [3] is a corpus annotated in the framework of RST theory
which contains 385 documents from the Wall Street Journal. To make fair comparison
with [23] , we follow them to use 380 documents to do the experiments, 342 for training
and 38 for testing. Totally, there are 21111 EDUs and 8272 sentences in detail. Every
document contains 55 EDUs in average and every sentence contains 2.55 EDUs in
average. In this paper we use the 111 fine-grained relations and gain the POS tags using
NLTK maxent_treebank_pos_tagger.
6.2 Results and Discussion
6.2.1 Results with Standard EDU Embedding Method

With the standard EDU embedding method in Section 5.1.1, we list results in Table
2. Here we cite results of [23] with their feature sets 1 and 21 including 8 features.
We listed the methods for comparison, "Eisner" and "MST" are algorithms in [23].
"EDUVEC" means paragraph vector of the EDU and used only in this sub-section, all
the experiments in other sub-sections exclude the EDUVEC. "FW" means first word of
the EDU, "FP" means the first word’s POS tag, "LW" means the last word of the EDU
and "Feature only" means we exclude EDUVEC and only use features in the standard
EDU embedding way. Here LAS means labeled accuracy, with relation and head. UAS
means unlabeled accuracy, with head only.

We can see in Table 2 with only the EDUVEC and no features, the UAS rises en-
couragingly to 38.79%. This is a good proof for the high power of LSTM model to
do discourse parsing. Compared with [23] we use only two features, first word of the
EDU(FW), first word’s POS of the EDU(FP) in their large feature set 1 and set 2, the
UAS rises to 50.04% and both the UAS and LAS are higher than their better Eisner
method by 12.61% and 2.39%. When we include the last word(LW) the UAS and LAS
are higher than Eisner by 16.91% and 4.87%.

This means our stack LSTM model could gain much higher result than [23], even
when we use much fewer features. LSTM discourse parsing model with standard EDU
embedding method could gain a much higher result with fewer features over graph-
based parsing method even with transition-based framework. That is a solid proof to
LSTM model’s suitability for discourse parsing task especially when people want to
save efforts in designing sophisticated features.

6.2.2 Results with Word Based and Word/POS based EDU Embedding Method
With the method in Section 5.1, the results are listed in Table 3. We use feature

sets: a, b, c, d listed in Section 5.1 and "Feature only" means we use the standard EDU

1 In Table 2 row ID 1 and row ID 2, we use results of [23] when they do experiment with their
whole feature set 1 and feature set 2. We list their two feature sets below:

(1) WORD: The first one word, the last one word, and the first bigrams in each EDU, the
pair of the two first words and the pair of the two last words in the two EDUs are extracted as
features.

(2) POS: The first one and two POS tags in each EDU, and the pair of the two first POS tags
in the two EDUs are extracted as features.
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ID Method Features UAS LAS

1 Eisner 8 features(set 1+set 2) 0.3743 0.2421
2 MST 8 features(set 1+set 2) 0.2080 0.1300

3 EDUVEC NONE 0.3879 0.0356
4 EDUVEC+FW FW 0.5029 0.2467
5 EDUVEC+FP FP 0.3968 0.1745
6 Feature only FW+FP 0.5004 0.2660
7 EDUVEC+FW+FP FW+FP 0.5141 0.2523
8 Feature only FW+FP+LW 0.5434 0.2908

Table 2. Comparison with Graph-based Discourse Parsing Method

embedding method in section 5.1.1, here it is the baseline. "WME" means the word
based EDU embedding method discussed in Section 5.1.2. Though this is a good di-
rection in embedding EDUs, but there are 19262 tokens in the vocabulary, including
upper or lower case of the same words, numbers, special symbols and low term fre-
quency words. These will inevitably give bad effect on the accuracy. So we replace
various numbers in the vocabulary with the same token and only use the lower case of
the word, hence 15696 tokens remain and the UAS raises to 57.78%. Both the UAS and
LAS are higher than the baseline by 1.05% and 2.09%. These give a potential on oth-
er EDU pre-processing method. "WPE" means the word/POS based EDU embedding
method discussed in Section 5.1.2. When we replace words with low term frequency
(tokens appear once in vocabulary) with their POS tags, the vocabulary size decline to
8256 tokens. The UAS rises to 58.61% and 1.88% higher than the baseline.

These results show our new multilayer stack LSTM discourse parsing model with
novel EDU embedding method is stronger than the baseline (two layer stack LSTM
model without the EDU embedding layer). Our novel EDU embedding method is a
potential improvement direction in discourse parsing since this method gives each EDU
an portray and could be improved in many ways because besides words’ surface form
and POS tag, other information could be used in the same way and encode the EDUs
into our multilayer stack LSTM discourse parsing model. And this method is useful
especially when people do not want to or can not design complex features.

ID Method Features UAS LAS

1 Feature only a+b+c+d 0.5673 0.3065
2 Feature +WME a+b+c+d 0.5778 0.3274
3 Feature +WPE a+b+c+d 0.5861 0.3214

Table 3. Parsing Results with Word based and Word/Pos based EDU Embedding Method

6.2.3 Comparison with structured perceptron based dependency discourse pars-
ing

In order to verify the ability of our multilayer LSTM discourse parser, we imple-
ment a dependency discourse parser in perceptron based shift-reduce framework with
early update strategy [6] as our baseline. The input EDUs are initially sent to a queue
and the algorithm removes the EDUs and pushes them into a stack which stores the
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temporary dependency structures of the processed part of EDUs according to the tran-
sition rules. The algorithm terminates when the queue is empty. With an arc-eager style,
the perceptron based parser have four actions: Left-ARC, Right-Arc, Reduce and Shift,
details could resort to [1]. Further, We use four perceptrons to predict the score for each
transition action and train them in a greedy way. Before each transition, the percep-
tron predicts the best action instead of the LSTM. We use the features listed in Section
5.1(set a, b, c, d) and use 72 feature templates including the first, second and third el-
ement’s f eai of the 12 features both in the queue and the stack. This is the method
"Perceptron" in Table 4. "LSTM" means the stack LSTM with standard EDU embed-
ding method in Section 5.1.1, and "WME" and "WPE" have the same meaning as Table
3.

As seen in Table 4, with the standard EDU embedding method, the two layer LST-
M discourse parser has an UAS of 56.73%, about 3.62% higher than the baseline but
the LAS is lower for 0.55%. But with our word/POS based EDU embedding method
in Section 5.1.2, our multilayer LSTM parser wins both in UAS and LAS when we
use the same feature sets a, b, c, d. In order to test the performance with complex fea-
tures we add the pairwise features as [23], so we add feature set e, this time both the
WME and WPE raise. Finally, after tuning the dimensions of the LSTM parameters,
"LSTMT+WME" gains the higher results.

Though, with few simple features our results have gap with the state-of-art, but [23]
use many complex features such as bigrams, pairwise words, pairwise POS tags and
pairwise intra sentence/paragraph position, length of EDU, dominate nodes, semantic
similarity from WordNet that we all exclude. Our focus is to verify the LSTM like
deep learning method’s ability in saving human feature design effort especially with the
EDU’s given "face" (word based and word/POS based EDU embedding method in Sec-
tion 5.1.2). And our WPE and WME have already win the perceptron based parser(with
72 feature template) using the same four feature sets.

ID Method Features UAS LAS

1 Perceptron 72 feature templates 0.5311 0.3120
2 LSTM a+b+c+d 0.5673 0.3065
3 LSTM+WME a+b+c+d 0.5778 0.3274
4 LSTM+WPE a+b+c+d 0.5861 0.3214
5 LSTM+WME a+b+c+d+e 0.5968 0.3453
6 LSTM+WPE a+b+c+d+e 0.5929 0.3316
7 LSTMT+WME a+b+c+d+e 0.6142 0.3410

Table 4. Comparison with perceptron based dependency discourse parser

6.2.4 Performance in discourse constituency
We also evaluate our parser in term of discourse constituency where we evaluate

the parsing performance with F measure [15] of the blank tree structure(S), the tree
structure with nuclearity indication (N) and the tree structure with rhetorical relation
indication but no nuclearity indication (R). To compare our dependency parsing re-
sults with constituency works, we convert the dependency trees to constituency trees.
In Table 5, other discourse parsing methods include: (1)"Eisner": the state-of-art de-
pendency parser with their full 6 sets features. (2)"Perceptron": our perceptron based
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dependency parser as discussed in Section 6.2.3 with 72 feature templates designed
from feature sets a,b,c,d. (3)"HILDA": SVM based constituency discourse parser [16].
(4)"LeThanh": multi-level rule based constituency parser [21]. (5) "Marcu": decision
tree based constituency parser [15]. "LSTM+WPE(abcd)" is our multilayer stack LST-
M dependency parser with word/POS based embedding method and feature set a, b, c,
d. "LSTM+WME(abcde)" is our word based embedding method with feature set a, b, c,
d, e. With few features, "LSTM+WME(abcde)" wins all the other parsers except Eisner
(Eisner uses their full 6 sets more complex features, we only use our smaller five simple
feature sets) although we are not designed specially for constituency parsing.

ID Method S N R

1 Eisner 83.4 73.8 57.8
2 LSTM+WME(abcde) 80.90 66.07 51.37
3 LSTM+WPE(abcd) 79.89 63.66 49.56
4 Perceptron 76.22 59.98 44.99
5 HILDA 72.3 59.1 47.8
6 LeThanh 53.7 47.1 39.9
7 Marcu 44.8 30.9 18.8

Table 5. Comparison in discourse constituency

7 Conclusion
In this paper, we first propose to use LSTM for discourse parsing, with this method
people could use as few feature engineering as possible to gain high performance. Then
we propose a novel multilayer stack LSTM dependency discourse parsing model with
word based and word/POS based EDU representation which are potential improvement
direction in discourse parsing. With this multilayer LSTM discourse parsing model, we
gain better performance than perceptron based discourse parser and graph-based model
under the same or even worse feature condition. Even when evaluated in discourse con-
stituency, our results are still encouraging compared to the state-of-the-art constituency
discourse parsers.
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